If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x-22=0
a = 2; b = 15; c = -22;
Δ = b2-4ac
Δ = 152-4·2·(-22)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{401}}{2*2}=\frac{-15-\sqrt{401}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{401}}{2*2}=\frac{-15+\sqrt{401}}{4} $
| 5=2y-12 | | 2x^2-15x-22=+ | | -1/3+6/5u=-1/2 | | 2x-57=-3 | | 2x^2-15x-22=0 | | J+9=-j-9 | | 0.83y+1=-0.5y+0.83y+0.25 | | 5x=2-12 | | 2-7n=19 | | 20k+5=5k+6520k+5=5k+65 | | s3+10=14 | | h-5/22=-24 | | 4(b-2)-10=2(b±3) | | s3+ 10=14 | | 49(3t+30)=-24 | | k/4+ 14=16 | | 9=2x+61 | | 4x+2=3x+6+x+2 | | 7×+5y=1 | | 15-√(3x+4)=28 | | 5x–8=52 | | -1,400+j=300 | | 5x−7=5(x−2)+3 | | 0=x^2+20x+96 | | 4(6h+9)=22+7h | | 2.3=x-3.6 | | -80(9n*60)=-44 | | -10z-2-3z=10-10z | | p4-(8-p)2-5=93 | | -12+f=4 | | 6x-4x-3=43 | | √2x-1+2=6 |